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The living cell is an autocatalytic network of metabolic pathways sustained far
from equilibrium by the supply of matter and energy. At the abstract level we can
regard a chart of cellular metabolic pathways as a network of undirected connexions
between metabolites (the nodes of the network) each connected pair being related
by an enzyme-catalyzed reaction. The clustering properties of the reaction networks
can be obtained from maps of known metabolic pathways. For the number of
nodes as a function of the number of connexions, a long-tailed distribution is
obtained, which can be described by a power law. We also find evidence consistent
with a power law in the relationship between regulatory proteins and genes. We
investigate three models for the construction of metabolic networks, which we
call the random connexion model, the random cluster model and the accumulation
model.  The last two of these give a long-tailed distribution of nodes. The random
cluster and accumulation models also exhibit ‘small-world’ features, in agreement
with the structure of real biological networks. We speculate on the possible
implications for the evolution of metabolic networks.
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1. INTRODUCTION

Abstract networks (or graphs) consist of nodes
and links between them. The number of links per
node, which we call the class of the node, may vary
between nodes, but in a homogeneous network the
statistical distribution of links will be the same from
region to region across the network. Classically, the
distinction amongst homogeneous networks has been
made between fully ordered networks, in which the
nodes are identical, and networks with nodes
connected independently at random. More recently,
it has been recognized that other non-random
distributions of links are not only possible but occur
naturally [1]. It is therefore important to investigate
the structure of networks and to consider models that
can reproduce observed distributions, since these will
provide clues to the evolution and construction of such
networks. Here we investigate the architecture of
metabolic and genetic networks in biological cells.

In the following section we deal with the evidence
from the literature and from our own investigations
[2] that reveals the structure of metabolic networks.
We find that they belong to a type of network in which
the distribution of nodes as a function class follows
a power law. These are the scale-free networks [3].
Such distributions are found in an increasing number
of other examples [4] including the connectivity of
the world wide web, the power grid of the US, and
citations of scientific papers. In these cases there seems
to be a clear explanation of the power law structure.
Connexions in these networks are not laid down at
random, but each grows by the addition of new nodes
that are connected to a node of the existing network
with a probability that depends on the pre-existing
number of connexions. In other words, new nodes are
connected preferentially to those nodes that are already
most connected. For the examples cited, this
assumption is qualitatively reasonable. For example,
the most cited papers are the most likely to be read
and hence the most likely to receive further citations.
It is not so easy to see why metabolic networks should
evolve in this manner. To see the problem, we consider
metabolic networks as examples of autocatalytic
networks [5] in which each reaction in the network
(each link) is catalyzed by a molecule in the network.
(Hence there are at least as many nodes that are also
catalysts as there are links.)  Consider now the
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emergence of a new node (catalyst or metabolite).
This might arise from an addition to the ‘food set’
(the external input of molecules to the network) or
by some random mutation of a catalyst, or from the
slow build up of the product of a weakly catalyzed
reaction.  It might be argued that the new metabolite is
more likely to arise from one of the more highly
connected nodes already present, but even  so, a new
catalyst would have a probability that was essentially
random of catalyzing other new reactions in the
network; it would not add preferentially to the highly
connected nodes because the emergence of the new
molecule is unrelated to its catalytic powers in other
parts of the network.

These considerations raise the more general ques-
tion therefore as to whether the structure of metabolic
networks reflects the structure of a particular set of
enzymes or can emerge in a random chemistry. The
issue here is the level of self-organization in metabolic
networks. Does the organization in these networks
arise at the level of enzyme chemistry or at the level
of network evolution, independent of the particular
chemical details? Since a random growth model does
not work (see below) and the scale-free model can be
queried on the grounds of biological relevance it is of
some interest to explore other models.

2. NUMERICAL  EXPERIMENTS

We consider a metabolic network as a graph having
metabolites as nodes linked by enzyme-catalyzed
reactions. As an indicator of the connectivity of a
network we form the distribution function of nodes with
given numbers of links. A node with n links is assigned
to class n. (So a metabolite of class 1 is an end-point.)
If we take account of the directions of the reactions
under physiological conditions then the graphs are
directed with links either into or out of a given
metabolite. In this case the classes refer to links in a
given direction. Jeong et al. have shown that metabolic
networks in 43 organisms, taken as directed reactions,
have a self-similar but non-homogeneous distribution
of nodes, following an approximate power law as a
function of class [6]. The power laws have approxi-
mately the same slope for both educts and for products.
Thus we expect an analysis which treats metabolic
networks as undirected will produce similar results.

It is of interest to ask if this result is already visible
in the well-known compendia of metabolic pathways.
We took the Boehringer Mannheim chart [7],
including all the reactions involving a given
metabolite (not just those joined by explicit links in
the visualization of the chart) but without regard to
direction, to obtain the class of each metabolite. We

also analyzed the Nicholson chart [8], but now
counting the arrows into or out of each metabolite as
they appear in the chart, with no account taken of
links that are not explicitly indicated. We ignored
connexions outside a metabolic chart itself and, since
most molecules of class 1 take part in further
reactions not included in the charts, we disregarded
class 1 molecules in the analysis.  Molecules such as
ATP and water, which are ubiquitous but which do
not appear on these charts as explicit nodes, were
ignored as were the inputs of these molecules into
reactions. We counted a total of 606 and 386 nodes
in the Boehringer Mannheim and Nicholson charts
respectively, restricting ourselves in the former case
to general biochemical pathways plus those confined
to unicellular organisms.

The result in both cases is an approximate power law
distribution for the number of nodes N(n) of class n:

N(n)=knα .                                     (1)

For the Boehringer Mannheim chart the least squares
fit to (1) yields parameters k = 1906 and α = −2.7
(see figure 1). The comparison with the best fit

gaussian distribution in figure 1 clearly shows the
long tail in the data relative to a gaussian fit to the
core.  Attempts to fit the tail at the expense of the
core give a worse formal chi-squared parameter. We
conclude that the sample is not drawn from a gaussian
distribution. For the Nicholson chart, the slope of
the power law obtained from a log-log fit is −3.2 out
to nodes of class 9, beyond which we have no data.
That we obtain approximate agreement for two
separate analyses gives us confidence for the view
that the charts are representative and that the set of
all metabolic pathways is approximately self-similar.
Given that we are using a small sample from a
heterogeneous subset of metabolic pathways the
slope cannot be regarded as significantly different
from that obtained by Jeong et al [6].

Figure 1. Best fit power law (solid line) and gaussian
(dashed line) compared with the data (points), from the
Boehringer Mannheim metabolic pathways chart [7]. For-
mal standard errors are shown. The best fit gaussian can-
not reproduce both the core and tail.
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3. MODELS

We consider three models for the origin of
structure in a metabolic network: random connexion,
random cluster and accumulation. In the random
connexion model we imagine the links between nodes
to be made independently at random. Biologically,
this would be the case if enzymes evolved with a
random probability of catalyzing a potential reaction
of the network [5]. We shall treat this as a special
case of the random cluster model in which nodes are
connected in groups. This might result from groups
of physically associated enzymes being transferred
as modules [9] or hyperstructures [10]. This model
is similar, but not equivalent, to the food web models
of Williams and Martinez [11]. A third model is based
on the probability that a molecule acquires a new
link (that is, becomes a substrate in a new reaction)
is enhanced in accordance with the number of links
that it already has. Such a probability might result if
the number of links were proportional to the
abundance of a molecule, since abundant molecules
might be expected to offer more probable substrates
for new reactions than scarce ones. It might also be
the case that metabolites that have multiple links,
and are therefore made in several ways, are more
difficult to eliminate from an evolving metabolism
and therefore have a higher than random survival
probability. We call this the accumulation model by
analogy with similar models in economics. It is
similar but not equivalent to the scale-free model of
Barabási and Albert [4] referred to above. In the
accumulation model the network can grow by making
additional links between existing nodes, as well as
by adding new ones at each step in its construction.

To obtain the random connexion and random
cluster distributions we use the following definition
of the connectivity matrix aij of a graph. Let the nodes
be labeled by i = 1,2…N.  Let the matrix element
aij = 1 if node i is linked to node j, and let aij = 0
otherwise. We take aii = 0, so a node is not considered
to be linked to itself, and aij = aji, so we are
considering undirected graphs. Let pc be a fixed
integer between 1 and (N − 1)/2 and let pl be fixed in
[0,1]. Moving along each row of the matrix (aij) in
turn let p and r be chosen independently from [0,1]
with uniform random probability. For each row i,
starting from column j = i + 1, choose aij = 1 for
j =  i + 1,…J = min(N, i + [rpc + 1]) if p > pl and
aij = 0 for this range of indices otherwise. The square
brackets [x] indicate the integer part of x. Now repeat,
starting from j = J + 1 until J = N. Thus, clusters of
nodes of all sizes (in the given range) are laid down
at random, so a class of node of a given size can occur

from all random combinations of smaller classes. The
connexions from a given node are however correlated
since a given link is likely to be one of a cluster. The
model therefore differs from a classical random graph
[12] except in the case  pc =1 where the nodes are
connected at random.

3.1 Random connexion model
The nodes are connected at random with pc = 1.

The result is the expected Poisson distribution of node
classes [12] (figure 2). In this model, an autocatalytic

network arises when the number of alternative final
steps in the production of a molecule is so large that
at least one will be catalyzed by another molecule of
the network with probability near unity, as described
by Kauffman [5]. We can think of this approximately
as follows: each molecule of the network catalyzes a
reaction in the network with some probability, and
hence provides a random link in the graph. This is
roughly equivalent to the case pc = 1 above, which
does not give a power law distribution of nodes. The
equivalence is not exact because the Kauffman
networks are anisotropic with larger molecules
potentially linked by more pathways. Nevertheless,
this difference is not crucial and Poisson statistics
holds approximately in Kauffman’s model, which
limits the extent to which it can be taken to describe
the evolution of real metabolic pathways.

3.2 The random cluster model
We have been able to generate a network of nodes

with an approximate power law distribution of links
in the random cluster model defined above. Figure 2
gives an example showing that for pc >> 1 the result is
an approximate power law distribution of node classes.

Figure 2. The distribution function for node classes from
two models. Crosses: the average of 4 runs of the random
cluster model for a network of 100 nodes. Squares: the
average of 4 runs of the random connexion model for a
similar network. Solid line: best fit straight line to the ran-
dom cluster model. The values pc = 10, pl = 1 − 2/N, and
N = 100 were chosen for ease of simulation.
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We can understand this roughly as follows.
A cluster of size n at a node is linked randomly to n
other nodes. Thus each time we insert a node in the
tail of the class distribution (above the diagonal of
the connexion matrix) we add a number of
uncorrelated instances of lower class nodes (below
the diagonal). The combination gives a long-tailed
distribution that approximates to a power law. Note
that as described here the model appears not to be
statistically homogeneous. Since connexions can only
be made from a given node to nodes with higher labels
the later nodes are treated differently from the earlier
ones. However, by filling in the whole matrix with
random clusters, not just entries above the diagonal,
and symmetrizing the resulting matrix we would treat
all nodes on the same footing and we would obtain an
equivalent distribution of node classes. Thus the
apparent departure from homogeneity is not
significant.

From the numerical simulation of the model we
can only claim an approximate fit to a power law
distribution; we cannot rule out an exponential tail.
Barabási et al. [3] have looked at the conditions under
which a power law distribution is possible and rule
out models in which the number of nodes is fixed
a priori. In our case the maximum number of nodes
available to the growing network is fixed in order to
simplify the programming, but the number of nodes
actually connected in the largest connected set is not
determined a priori. The fact that the network grows
through clusters of connexions is an essential
difference from a random connexion model.

3.3 Accumulation model
We label a set of N nodes sequentially and we

build a network by adding a connexion (i, j), between
nodes i and j (i, j = 1…N), with probability  p(1 + f(n)),
where p is fixed and less than (1 + max(f(n)))−1 and
f(n) is a function of the number of connexions n
already present from node i. The function f(n) is chosen
such that the probability that a node acquires a new
connexion increases with the number of connexions
it already has. Provided this condition is satisfied the
results are not qualitatively dependent on the form of
f. We used both powers and exponentials. The results
for f(n) = λn2, λ a constant, are shown in figure 3 and
compared with a power law. It is clear that in this
case the chosen parameters give rise to a tail in the
distribution which can be described as an approximate
power law.

4. SMALL  WORLDS

Small worlds are networks that are linked in such
a way that they exhibit a high degree of clustering
(like ordered networks) but a relatively short average
number of links between any two nodes (like random
networks) [1]. Such networks are associated with a
degree of robustness and efficiency [13]. To
investigate the small-worlds connectivity of the
random cluster model we translate the criteria of
Watts and Strogatz into graph theoretic terms. Let
A = (aij) be the matrix of connexions. The cliquish-
ness of the network describes the average number of
times any two nodes connected to a third node are
themselves connected. This is equivalent to counting
the number of closed triangles in the network, which
is proportional to

( )3Atrc =             (2)

We therefore define the relative clustering
parameter C = c/N.

The other key parameter is the minimum number
of steps connecting arbitrary pairs of points averaged
over the graph. This is slightly harder to define in a
computationally convenient way. We propose the
following. Let the products [An] be defined such that
its (i, j)th element [an

ij] is either 1 or 0 according to
whether the corresponding elements of the product
matrix An are positive or zero. The probability that
an arbitrary pair of nodes is connected after l steps
equals the fraction of the N (N − 1) non-diagonal
elements of [An] that are non-zero. This gives
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Figure 3. The accumulation model in which the probabil-
ity of making the another connexion from a node with n
present connexions is taken to be 0.01× (1 + 0.0015 n2).
The data was obtained for a network of 200 nodes.
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and suggests we define a path length parameter L as
the value of l for which f = 0.5, say. In fact, in general,
the product matrices break up into direct products, so f
does not tend to 1 as l→ ∞. This is equivalent to saying
that there are nodes that are not connected to anything,
and these should really be removed before we analyze
the network. We have therefore replaced N in equation
(3) by the number of connected nodes (as determined
for each numerical experiment). In practice, for the
parameter values in our simulations, this makes only a
small difference to the results.

We find the following. For a 100 node ordered
network with each node linked to its four nearest
neighbors, the cliquishness C = 5.8 and the length
parameter L = 14. For the random network, C is small
as we would expect , typically C < 0.2 and  L ~ 8. As we
increase the clustering, with pc taking values between
about 5 and 20 the clustering increases (C between
about 0.2 and 2) but the length remains close to the
random value (L ~ 4 - 6). This is indicative of small
worlds behaviour and agrees qualitatively with the
results of Jeong et al. [6]. We find a similar behaviour
in the accumulation model with C ~ 2 and L ~ 3 for
the parameters corresponding to figure 3.

5. OTHER  CELLULAR  NETWORKS

Clearly the enzymes, which can be thought of as
pathways entering the chart from outside, as well as
the genetic apparatus, are so far missing from our
analysis of cellular networks. Some additional
evidence for the structure of the complete network of
molecular interaction in the cell can be obtained from
the investigation of Thieffry et al. who carried out a
similar analysis to ours for the genetic regulatory
circuits in Escherichia coli [14]. The low number of
extended regulatory circuits surprised these authors,
but in fact their data shows some support for a power
law distribution. One of their sets of data giving the
numbers of proteins that regulate differently sized
groups of genes is shown in figure 4. Similarly,
Ramsden and Vohradský find power law behaviour
in protein synthesis [15]. At present the data are not
available for examining the interaction between
regulation of gene expression, protein synthesis and
metabolism, or for investigating the detailed evolution
of catalytic networks, but the models reported here do
provide some constraints on attempts at an integrative
biology [16].

6. EVOLUTION OF RANDOM NETWORKS

It is tempting to consider the departure from
randomness in the power law distribution of nodes,

and small-world structure, in metabolic pathways,
and possibly all cellular networks, as suggestive of
self-organized criticality.  To make this connexion
explicit we need to relate the power law distribution
to the dynamical process that generates it. For
example, the classical exemplar of self-organized
criticality in a model sand pile produces a power law
distribution of avalanches in a response to an external
supply of material. Could self-organized criticality
in metabolic networks result from the dynamics of
early cells? We can obtain some insight into these
dynamics by considering the network produced by
the fanning out of connexions from a single initial
metabolite.

Let us label each metabolite by si = +1, 0. Initially
we have si = 0 for all i. We choose an arbitrary node
j and set sj = 1 for this node. At the next step we set
si = 1 for all nodes that are connected to node j. The
vector (si) describes the state of the system at each
stage and is obtained from the connexion matrix by
si → [Σj aijsj.], where [x]=1 if x >0 and x = 0 otherwise.
This produces avalanches of all sizes of nodes with
si= 1 (figure 5), characteristic of the critical state [17].
It is also of interest that the statistical distribution of
node classes is governed by clusters of connexions
over a range of sizes, which is characteristic of
behaviour far from equilibrium.

At this stage the mapping onto a dynamical sys-
tem has only an abstract significance. The crucial
next step is to change the viewpoint to see the ava-
lanches not as the turning on of nodes in an existing
network, but as the way in which an autocatalytic
network might have grown. (For this purpose we have
to think of a metabolic network as part of an auto-
catalytic network.)  Over some long timescale we
envisage mutations or additions to the food set
whereby a new enzyme or metabolite appears. This
may result in the catalysis of one or more further
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Figure 4.  Regulated genes in E. coli.The number of  pro-
teins that regulate a given number of genes is plotted. The
data is taken from Thieffry et al.[13] omitting proteins that
regulate only one or two genes in order to show the power
law tail.  The best fit straight line has slope  −1.44.
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new reactions leading to a cascade of new enzymes
and metabolites on a short timescale until the pro-
cess comes to a halt. At each appearance of a new
catalyst there will be an avalanche of some number
of further new catalysts and metabolites. This pres-
ence of two timescales, one long, one short, is one
ingredient of a self-organized critical system. The
other aspect is some critical parameter that is self-
tuning. Here we note the surprising fact that meta-
bolic networks appear to have a constant diameter
(average number of reaction steps between a random
pair of nodes) independent of the size (number of
nodes) of the network [6]. We speculate that networks
may evolve in a self-similar manner to maintain the
diameter at its critical value.
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