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Isomorphism between morphological and functional graphs of the cell and classi-
fication of cells by the extensions of graphs
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Morphological and functional graphs of the cell are constructed, expressing dynamic
ontogenetic transformations between six different types of membranes of organelles and
theinterrelations between six different functionsof vital significancefor thecell. Morphisms
(epimorphisms) from different biological graphsto afunctional graph are constructed. Itis
shown that there exists an i somorphism between morphol ogical and functional graphswhich
expressesthe most essentia formsof vital processes. It isfurther shown that the components
with vital functions transform and transfer to each other. To classify and construct cell
structures the apparatus for extensions of graphs developed by the author is used, which
enables hierarchical biological systemsto be described.
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The present work concerns an attempt to express some
basic phenomena occuring in a cell by means of graphs.
N. Rashevsky [1, 2] suggested the construction of an
oriented graph for every organism. Thegraphs correspon-
ding to different organisms are formed from each other
with the help of the general rule of geometrical trans-
formation and can be mapped onto each other epimor-
phously preserving some basic relations.

To some extent our work is closeto Rashevsky’sworks.
We shall try to construct functional and morphological
(referring to ontogenetic mutually transformed membranes
of organelles) graphs of the cell. We wish to prove that
between functional and morphological graphs there is
isomorphism expressing themost essentia featuresof vital
processes. Inthefuture, similar graphswill makeit possible
to consider the organization of biological processesin a
cell in adifferent way, to find those forms of order which
are not revealed at the present stage. It is natural to try to
apply different constructions of the theory of graphs to
construct biological structures (see [3] for an example
where the apparatus of the extension of graphsis used).

Consider agraph G viewed intuitively as an encoding
of a system consisting of objects labelled v and various
interrel ations between them labeled i.

Being a graph implies that V; the set of its vertices,
and |, the set of itsarrows, are given. Moreover each arrow
from I has a source and atarget from V. In other words
G is determined by two sets Vs, | and two mappings
fromlgto Vg,

‘source’, ‘target’ @ lg - Ve

such that any arrows having the same source and the same
target are the same.

Furthermorelet (G,)vnv, be afamily of graphs, one for
each vertex of G.

An extension of the graph G, with the family(G,)vov,
is a graph H together with an epimorphism o:H -G
(epimorphism 0:Vy — Vg such that images of incident
vertices are either incident or equal), such that *(v)=G,
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for each v[VMs . An extension (H,o0) and family of
epimorphisms o*(v) - G, determines a certain partial
morphism:

fr( Ve, %l - [ ]2 @)

suchthat f(v2,i)02 , where: i0le, v?O Ve, a=1,...,m; v*
isasourceof thearrow i and V' isthetarget of thearrow i,
nis the number of verticesin (V).

To make the notion of graph extension more under-
standable, let usturn to a particular example: consider the
graph Gin fig.1a, whosevertices represent two objectsv,
and v, and two interrel ations, labelled, respectively, i; and
i», incidence for i; being from v; to v, and that for i, being
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Figure 1 a. Graph G.

fromv,tov.. Thatis, i;beginsin v, and endsinv,, and i,
beginsin v, and endsin v;.

We next turn to the definition of a morphism between

graphs, say, a morphism from a graph G,, (fig. 1b) to a
graph G, (fig. 1c). Let us assign to the vertex v; of the
graph G,, the vertex v, of the graph G,,: v, — V.
In general, amorphism f of graphs G, - G,isamapping
f: Vg, - Ve, such that if there is an arrow with
source v and target V', then either f (v)=f (V') or thereisan
arrow with sourcef (v) and target f (V).

If the vertex vZ of the graph G,, is assigned to the
vertex v/ of the graph G,,, then the arrow i corresponds
to the arrow i;". Hence we obtain amorphism of graphs f
with

f(v) =V, f(v)=VS.
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Now what is the definition of an epimorphism from a
graph G, to the graph G.. Intuitively, this meansthat each
vertex of G, istheimage of some vertex from G;.

Themap f aboveisan example of amap whichisnot
an epimorphism, since the vertex v and the arrows i,
i have empty inverse images under f.

On the other hand, define another map g from the
graph G, tothegraph G,,by v — vi,i.e. by assigningto
the vertex v, the vertex v;, and furthermore v; - v,
V5 - VvZ; one can check easily that this is a graph
morphism which is an epimorphism (seefigs 1b and 1c).

I
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Figure 1 b. Graph G,,.
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Figure 1 c. Graph G,,.

Let usnow definean extension of agraph G by afamily
G, of graphs. For simplicity let us assume that the
family{ G} .nv, consists of two graphs G,, and G,,. Then,
construct agraph H asfollows: place at each vertex of G
the corresponding graph from the family, i.e. in our case
place at the vertex v; the graph G,,and at v, the graph G,,,.
Then construct the new arrow h starting at some vertex of
G,,and ending in G,, and starting at some vertex G,, and
ending in G, (seeFig. 1d). ,
Vs
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Figure1 d. Graph H.

L et us show that thereisan epimorphismfromH to G.
Indeed, define the map o by o (G,) =i, 0(G,,)=v- and
o(h)=i,, a(hy)=i,, then clearly o is such an epimorphism.

In the language of system theory, H is a compound
system consisting of two subsystems G,, and G,,,
interrelated viah, and h,, whereas consi dered as units, they
are interrelated via the arrow i,. The arrow i, encodes in
itself multiple interrelations, in our particular example
two interrelations h; and h,. In principle this is a
mathematical description of the concept of decomposing
awholeinto interrelated parts.
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Such extensionsare naturally realizedin thefollowing
way: as G we take the graph Ge corresponding to the
relation of exocytosis and endocytosis of the cell (fig. 2a)
and with the corresponding Ge, Ge. (figs 2b and 2c) and f
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Figure 2. From top to bottom:

a) the graph G corresponding to the relation of exocytosis
and endocytosis of the cell;

b) the graph G, expressing endocytosis of the cell;

c) the graph G expressing exocytosis of the cell.

weget asan extension graph G; of thecell itself, thegraph
of ontogenetic mutual transformations of the membranes
of organelles Gren, i.€. graph Ain our earlier work [4]. We
can say that instead of vertices expressing endocytosisand
exocytosisin the graph G we substitute their correspon-
ding graphs G and Ge, and construct new arrows, the
sources of which will be some verticesv[] G or VGe
and the targetswill be someverticesv[JGe or V] Ge. IN
its turn graph Grem, i.€. graph G; can also be extended if
we know the corresponding graphsfor each membrane. It
should be noted that the graph which isbeing extended is
hierarchically at a higher level than the graph obtained
after extension, i.e. if some graph expresses relations
between different components at somelevel, then after its
extension we get the graph expressing relations between
the subcomponents of these components at alower lewel.
Thus, different cellular typesare characterized by mappings
of theextension f, i.e. the cellsare marked and coded with
different mappings of the extension. Of course not all
graphs G; constructed by different f will correspond to
cells. For example, with some f's such graphs G; are
obtained which are trees: and there are 1540944
non-isomorphic oriented 6-vertex graphs atogether (6 -
orgraphs) [5]. From thisnumber 6 treesand 1296 marked
trees must be subtracted. The same could be said about
simple orgraphs. After extension of graph Ge by graphs
Ge and Ge, and the two mappings f and g, the extended
graphs G; and G, may happen to be isomorphic. The
isomorphism between G; and G,, i.e. the equivalence

between mappings, istested in the following way:
afr(v)i]=T[ f(vi ), )

where il]ls ,v[J Vs, and T is the automorphism of the
family (Go)vov,-
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Let usillustrate the above by an example. Let thegraph
G be given (fig. 2a). Let also graphs G., and G be
given (fig. 2b and 2c). Let the mappings of extension f
and g be given, defined in the following way:

f(Veny riee,)={ Ve} s O(Ven, lee)={ Vec }

f(Ver, slee)) ={ Ven} ;- 9(Ver, i) ={ Vens}

Let us construct the extensions G; and G, of the graph
Ge by graphs G, and G, and the mappings fand g. If we
apply the equality (2) then G; and G, will be isomorphic
(fig. 3).

Vex,
°
,/’"F H“‘a., Vex,
o > o<——eo ° v &4
Ven, Ven, Vex,
Vex,
°
Ven, Ven, Vex, Vex,
o_ = o? hd Vex 4

Figure 3. Isomorphism between the graphs Gr (upper) and Gg
(lower).

Thus, after extension of the graph Ge by graphs Ge,
and G and the equivalent mappings of f and g we obtain
isomorphic graphs G; and G, representing the same cell.
Now our primary task is the construction of graph A, i.e.
graph Gnen, 8s described in the next section.

Construction of the graph of ontogenetic transforma-
tions of membranes of organelles - the morphological
graph A (the graph Grem)

Inmodelling acell (aswell asin modelling any system)
it is necessary to define the most essential features, and
this may be done with a block-scheme. From common
theoretical, mathematical, cybernetical etc. considerations
we have described such a block-scheme [4],[6-8].

We assume that in a cell there is a such a dynamical
composition which covers the relations between mem-
branes and expressesthe functional morphology of thecell.
Many biological processes occurring in the cell rest upon
thiscomposition asthebasis. Therelationsbetween various
membranes can be expressed by a graph showing the
dynamicsof morphological transformationsin ontogenesis
[4],[6-8]. This graph is the morphological block-scheme
of the cell (fig.4). The vertices of graph A denote
membranes and the arrows denote mutual transformations
of membranesin ontogenesis. Thesearrowsare constructed
on the basis of data from different authors; for example,
refs[9-13]were used to construct the arrow from the Golgi
complex to the plasmalemma. For the non-biologist reader
we'll try to make more explicit the membranes, their
intertransformations and biogenesis. Biological mem-
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Figure4. Themorphological graph A (graph Gmen Of Ontogenetic
intertransformations of membranes of organelles. RB is the
residua body, Ly the lysosome, Pl the plasmalemma (plasma
membrane), GC the Golgi complex, ER the endoplasmic
reticulum, and Nm the nuclear membrane.

branes are lipid-protein complexes in which the lipid
molecules form an ordered (liquid-crystallic) layer, in
which the protein molecules are inserted. Topologically,
membrane surfaces are closed two-dimensional oriented
(two-sided) surfaces. The two sides (inner and outer)
bounding this layer differ from each other significantly.
Discontinuities of biological membranes, with the
formation of free boundaries, vanish practically instant-
aneously by “annealing”, with recovering of continuity of
the membrane surface. The surface of each cell iscovered
by the plasma (outer) membrane. For the ssimplest cells
(prokaryota) this is the only membrane system.
Topologically, it is a sphere surface.

In cells of higher type (eukaryota) the inner cell
membrane systems are very variable both morphologically
and functionally. Themembrane systemsof eukaryotic cells
are closed surfaces (membranic organoids) of various
topologica genus, which are embedded into the closed
surfaces formed by the plasma membranes, i.e. into
spheres. Moreover, most of the vital processes of a cell
are related to membranes. In order to understand the
morphofunctional organization of the cell, consideration
of the dynamics of membrane transformations—
topological transformations of surfaces formed by
membranes—is most important.

Among the most complicated of these systemsis the
outer membrane of the nucleus, which is topologically a
sphere, i.e. asphere embedded into another one. The outer
membrane of the nucleus consists of membrane surfaces
of two types, which are related to each other by channels
(holes piercing the membrane). Since the number of holes
isvery high, the genus of the surface of the nucleusisvery
high too. Moreover the number of holes varies according
to various functional activities.

Bubbles (small spheres), or fragments with holes,
continuously separate from the outer nuclear surface.
Furthermore, these small bubbles form, by coalescence,
surfaces of other types, in particular the endoplasmic
reticulum. Hence, topological transformations of the
nuclear membranetake place continuously—bothitsgenus
and connectivity changes.

Topologicaly, membrane circulation is the process of
change of membrane connectivity—i.e. when some parts
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become cut out and the cutouts closed up by spheres, and
simultaneously free boundaries of membranes become
glued in. In their turn, small membrane spheres again
coalesce with each other and newly formed bubbles
become inserted in the membrane of the plasmalemma.
Thus the bubbles separated from the Golgi complex form
the plasmaemma, i.e. amembrane surface of onetype (the
Golgi surface) forms a membrane surface of another type
(the plasmalemma).

Similar factshold concerning theinterrel ations of pairs
of other membrane surfaces. Their topological differences
determine functional differences, whereas topological
intertransformationsrel atethe functionalities of membrane-
based organelles of different types, and the possibility of
their realizationisanecessary condition for thefunctioning
of the synthetic and transportational succession of the cell.

The construction of the functional graph D

Functions of vital importance take place in the cell:
the reception (assimilation) of food and energy, the
decomposition and synthesis of new substances, and their
storage and excretion. Inthework [4] thelist of functions
did not include the transport of nuclear metabalites; it is
now included. These functions are interrelated in such a
way that they form the administrative contour of the cell.
To support life as a whole it is necessary to have the
complete set of vital functions. Failure to perform even
only oneof themisincompatiblewith life. The set of these
six functionsisthe samefor al organisms.

Apriori the interrelation of vital functionsin similar
systems can be expressed by the functiond graph D (fig. 5).

reception (assimilation)
o

excretion e <———decompositione

storage

transport of nuclear metabolites e %E ;y nthesis
Figure 5. The functional graph D.

Functional graphs have also been constructed by other
authors. Graph D isthe functional block cheme of the
cell. In the work [8] it is shown that there is morphism
from the biological graph of Rashevsky [1], [2] and from
other graphs onto the functional graph D. Thusit follows
that graph D, although givenin simplified form, haswell-
grounded validity.

I somorphism between the morphological graph A and
the functional graph D

We shall now show that thereisisomorphism between
the graphs A and D. It will be natural if we construct a
morphism between A and D inthefollowing way: we shall
attribute the plasma membrane component of graph A to
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thefunction of “assimilation” of graph D, thelysosometo
the function of “decomposition”, the Golgi complex to
“storage”, the endoplasmic reticulum to “synthesis’, the
residual body to “excretion”, and the nuclear membrane
to “transport of nuclear metabolites’. In other words, we
correlate the functions performed by these membranesin
the cell with the different types of membranes. The
morphism constructed betweenthe graphs Aand D insuch
away isisomorphism.

Thus, the directions of morphologica and functional
relations coincide with each other. |somorphism between
thefunctional graph D (thefunctional block-scheme) and
the morphological graph A (the morphological block-
scheme) isanimportant fact, it accountsfor the essence of
circulationin the cell. Reconstructions of membranes, when
their connectedness and the genus of the surface change,
constitute the necessary conditionsfor the“ administrative”
control of the cell.

It is most probable that the cell differs from non-
biological systems in this point, that the components
performing the vital functions transform into one other.

In our earlier work [4] we raised the question whether
thecirculation of membranesasthe graph Aisthestructural
expression of the the functional graph D, i.e. the graph of
vital functions, and one of the most specific signs for the
biology of the cell, and indeed lifein general.

Now we can give a positive answer to this question.
The six mutually related functions performed by those
membraneswhich arereconstructed in ontogenesisarethe
cause, i.e. the mechanism, of the reconstruction.ve,,

It can be shown that the graph A isthe extension Gy of
the graph Ge. by G., and G and the mapping

([ Ve %16 - [ ]2
ViIVG VINVG
defined in thefollowing way:

F(Ven, slee) ={ Ve, 33 F(Ven, slee)={ Ve, Ve, 33 F(Veysiee,) ={ Ve }

where Ve, isthe nuclear membrane, Ve, isthe endoplasmic
reticulum, Ve, istheresidual body, ve, isthelysosome, ve,,
isthe plasmalemma,ve, isthe Golgi complex. Ontogenetic
intertransformations of the membranes of the cell are
characterized by thismapping f (fig. 4).

If the second mapping g isaso given and if G and G
arethegraphsof the cell, then with the help of the equality
(2) we can predict whether the graphs G; and G, will be
the graphs of the same cell, or of different cells.

Finally we can note that construction of a graph of a
complex biological organism from a simple (primordial)
graph in Rashevsky's work is virtually an extension too,
although in his works the word extension is never
mentioned [1, 2].
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