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The present work concerns an attempt to express some
basic phenomena occuring in a cell by means of graphs.
N. Rashevsky [1, 2] suggested the construction of an
oriented graph for every organism.  The graphs correspon-
ding to different organisms are formed from each other
with the help of the general rule of geometrical trans-
formation and can be mapped onto each other epimor-
phously preserving some basic relations.

To some extent our work is close to Rashevsky’s works.
We shall try to construct functional and morphological
(referring to ontogenetic mutually transformed membranes
of organelles) graphs of the cell. We wish to prove that
between functional and morphological graphs there is
isomorphism expressing the most essential features of vital
processes. In the future, similar graphs will make it possible
to consider the organization of biological processes in a
cell in a different way, to find those forms of order which
are not revealed at the present stage. It is natural to try to
apply different constructions of the theory of graphs to
construct biological structures (see [3] for an example
where the apparatus of the extension of graphs is used).

Consider a graph G viewed intuitively as an encoding
of a system consisting of objects labelled v and various
interrelations between them labeled i.

Being a graph implies that VG the set of its vertices,
and IG, the set of its arrows, are given. Moreover each arrow
from IG has a source and a target from VG. In other words
G  is determined by two sets VG ,  IG and two mappings
from IG to VG ,

‘source’, ‘target’ :  IG
 →VG

such that any arrows having the same source and the same
target are the same.

Furthermore let (Gv)v∈ VG be a family of graphs, one for
each vertex of G.

An extension of the graph G, with the family(Gv)v∈ VG

is a graph H together with an epimorphism σ:H→G
(epimorphism σ:VH

 →VG such that images of incident
vertices are either incident or equal), such that σ–1(v)≈Gv

for each v∈ VG . An extension (H,σ) and family of
epimorphisms σ–1(v)→Gv determines a certain partial
morphism:

f : CC
GVv

vGV
G

GVv
vG IV

∈

′

∈

→× 2)(                 (1)

such that  f (vα,i)∈ vGV ′2 , where: i∈ IG, vα∈ VGv
, α=1,...,n; vα

is a source of the arrow i and v´ is the target of the arrow i,
n is  the number of vertices in  f –1(v).

To make the notion of graph extension more under-
standable, let us turn to a particular example: consider the
graph G in  fig.1a, whose vertices  represent two objects v1

and v2 and two interrelations, labelled, respectively, i1 and
i2, incidence for i1 being from v1 to v2 and that for i2 being
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from v2 to v1. That is, i1 begins in v1  and ends in v2, and i2

begins in v2 and ends in v1.
We next turn to the definition of a morphism between

graphs, say, a morphism from a graph Gv1 (fig. 1b) to a
graph Gv2 (fig. 1c). Let us assign to the vertex 1

1v  of the
graph Gv1 the vertex 1

2v of the graph Gv2:
1
1v  → 1

2v .
In general, a morphism  f  of graphs G1→G2 is a mapping
f : VG1→VG2  such that if there is an arrow with
source v and target v´, then either f (v)= f (v´) or there is an
arrow with source f (v) and target  f (v´).

If  the vertex 2
2v  of the graph Gv2 is assigned to the

vertex 2
1v  of the graph Gv1, then the arrow 1

2i corresponds
to the arrow 1

1i . Hence we obtain a morphism of graphs  f
with

 f )( 1
1v = 1

2v , f )( 2
1v = 2

2v .

Figure 1 a. Graph G.
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Now what is the definition of an epimorphism from a
graph G1 to the graph G2. Intuitively, this means that each
vertex of G2 is the image of some vertex from G1.

The map  f  above is an example of a map which is not
an epimorphism, since the vertex 3

2v and the arrows 3
2i ,

2
2i have empty inverse images under  f.

On the other  hand, define another map g  from the
graph Gv2 

to the graph Gv1 by 1
2v → 1

1v , i.e. by assigning to
the vertex 1

2v the vertex 1
1v , and furthermore 3

2v → 1
1v ,

2
2v → 2

1v ; one can check easily that this is a graph
morphism which is an epimorphism (see figs 1b and 1c).

Let us now define an extension of a graph G by a family
Gv of graphs. For simplicity let us assume  that the
family{Gv}v∈ VG consists of two graphs Gv1 

and Gv2. Then,
construct a graph H as follows: place at each vertex of G
the corresponding graph from the family, i.e. in our case
place at the vertex v1 the graph Gv1 

and at v2 the graph Gv2.
Then construct the new arrow h starting at some vertex of
Gv1and ending in Gv2 and starting at some vertex Gv2 and
ending  in  Gv1(see Fig. 1d).

Let us show that there is an epimorphism from H to G.
Indeed, define the map σ by σ (Gv1) =v1, σ(Gv2)=v2 and
σ(h1)=i1, σ(h2)=i2, then clearly σ is such an epimorphism.

In the language of system theory, H is a compound
system consisting of two subsystems Gv1 and Gv2,
interrelated via h1 and h2, whereas considered as units, they
are interrelated via the arrow i1. The arrow i1 encodes in
itself  multiple interrelations, in our particular example
two interrelations h1 and h2. In principle this is a
mathematical description of the concept of decomposing
a whole into interrelated parts.

Such extensions are naturally realized in the following
way: as G we take the graph Gee corresponding to the
relation of exocytosis and endocytosis of the cell (fig. 2a)
and with the corresponding Gex, Gen (figs 2b and 2c) and  f

we get as an extension graph Gf   of the cell itself, the graph
of ontogenetic mutual transformations of the membranes
of organelles Gmem, i.e. graph A in our earlier work [4]. We
can say that instead of vertices expressing endocytosis and
exocytosis in the graph Gee we substitute their correspon-
ding graphs Gex and Gen and construct new arrows, the
sources of which will be some vertices v∈ Gex or  v∈ Gen

and the targets will be some vertices v∈ Gex  or   v∈ Gen. In
its turn graph Gmem, i.e. graph Gf  can also be extended if
we know the corresponding graphs for each membrane. It
should be noted that the graph which is being extended is
hierarchically at a higher level than the graph obtained
after extension, i.e. if some graph expresses relations
between different components at some level, then after its
extension we get the graph expressing relations between
the subcomponents of these components at a lower lewel.
Thus, different cellular types are characterized by mappings
of the extension  f, i.e. the cells are marked and coded with
different mappings of the extension. Of course not all
graphs Gf  constructed by different f will correspond to
cells. For example, with some f’s such graphs Gf  are
obtained which are trees: and there are 1540944
non-isomorphic oriented 6-vertex graphs altogether (6 -
orgraphs) [5].  From this number 6 trees and 1296 marked
trees must be subtracted. The same could be said  about
simple orgraphs. After extension of graph Gee by graphs
Gex and Gen and the two mappings f and g, the extended
graphs Gf  and Gg may happen to be isomorphic. The
isomorphism between Gf  and Gg, i.e. the equivalence
between mappings, is tested in the following way:

[ ] [ ])i,v(fTi),v(Tg = ,                                                  (2)

where i∈ IG ,v∈ VGv
, and T is the automorphism of the

family (Gv)v∈ VG.

Figure 1 d. Graph H.
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Figure 1 c. Graph Gv2.
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Figure  2. From top to bottom:
a) the graph Gee corresponding to the relation of exocytosis
and endocytosis of the cell;
b) the graph Gen expressing endocytosis of the cell;
c) the graph Gex  expressing exocytosis of  the cell.

Figure 1 b. Graph Gv1.
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Let us illustrate the above by an example. Let the graph
Gee be given (fig. 2a).  Let also graphs Gen and  Gex be
given (fig. 2b and 2c). Let the mappings of extension  f
and g be given, defined in the following way:

 f(ven1 
,iee1)={vex1};  g(ven2 

,iee1)={vex1}

 f(vex1 
,iee2)={ven2};  g(vex1 

,iee2)={ven1}
Let us construct the extensions Gf  and Gg of the graph

Gee by graphs Gen and Gex and the mappings  f and g.  If we
apply the equality (2) then Gf  and Gg will be isomorphic
(fig. 3).

Figure 3. Isomorphism between the graphs Gf  (upper) and Gg

(lower).

Thus, after extension of the graph Gee by graphs Gen

and Gex and the equivalent mappings of  f and g we obtain
isomorphic graphs Gf  and Gg representing the same cell.
Now our primary task is the construction of graph A, i.e.
graph Gmem, as described in the next section.

Construction of the graph of ontogenetic transforma-
tions of membranes of organelles - the morphological
graph A (the graph Gmem)

In modelling a cell (as well as in modelling any system)
it is necessary to define the most essential features, and
this may be done with a block-scheme. From common
theoretical, mathematical, cybernetical etc. considerations
we have described such a block-scheme [4],[6-8].

We assume that in a cell there is a such a dynamical
composition which covers the relations between mem-
branes and expresses the functional morphology of the cell.
Many biological processes occurring in the cell rest upon
this composition as the basis. The relations between various
membranes can be expressed by a graph showing the
dynamics of morphological transformations in ontogenesis
[4],[6-8]. This graph is the morphological block-scheme
of the cell (fig.4). The vertices of graph A denote
membranes and the arrows denote mutual transformations
of membranes in ontogenesis. These arrows are constructed
on the basis of data from different authors; for example,
refs [9-13]were used to construct the arrow from the Golgi
complex to the plasmalemma. For the non-biologist reader
we’ll try to make more explicit the membranes, their
intertransformations and biogenesis. Biological mem-

branes are lipid-protein complexes in which the lipid
molecules form an ordered (liquid-crystallic) layer, in
which the protein molecules are inserted. Topologically,
membrane surfaces are closed two-dimensional oriented
(two-sided) surfaces. The two sides (inner and outer)
bounding this layer differ from each other significantly.
Discontinuities of biological membranes, with the
formation of free boundaries, vanish practically instant-
aneously by “annealing”, with recovering of continuity of
the membrane surface. The surface of each cell is covered
by the plasma (outer) membrane. For the simplest cells
(prokaryota) this is the only membrane system.
Topologically, it is a sphere surface.

In cells of higher type (eukaryota) the inner cell
membrane systems are very variable both morphologically
and functionally. The membrane systems of eukaryotic cells
are closed surfaces (membranic organoids) of various
topological genus, which are embedded into the closed
surfaces formed by the plasma membranes, i.e. into
spheres. Moreover, most of the vital processes of a cell
are related to membranes. In order to understand the
morphofunctional organization of the cell, consideration
of the dynamics of membrane transformations—
topological transformations of surfaces formed by
membranes—is most important.

Among the most complicated of these systems is the
outer membrane of the nucleus, which is topologically a
sphere, i.e. a sphere embedded into another one. The outer
membrane of the nucleus consists of membrane surfaces
of two types, which are related to each other by channels
(holes piercing the membrane). Since the number of holes
is very high, the genus of the surface of the nucleus is very
high too. Moreover the number of holes varies according
to various functional activities.

Bubbles (small spheres), or fragments with holes,
continuously separate from the outer nuclear surface.
Furthermore, these small bubbles form, by coalescence,
surfaces of other types, in particular the endoplasmic
reticulum. Hence, topological transformations of the
nuclear membrane take place continuously—both its genus
and connectivity changes.

Topologically, membrane circulation is the process of
change of membrane connectivity—i.e. when some parts

Figure 4. The morphological graph A (graph Gmem
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become cut out and the cutouts closed up by spheres, and
simultaneously free boundaries of membranes become
glued in. In their turn, small membrane spheres again
coalesce with each other and newly formed bubbles
become inserted in the membrane of the plasmalemma.
Thus the bubbles separated from the Golgi complex form
the plasmalemma, i.e. a membrane surface of one type (the
Golgi surface) forms a membrane surface of another type
(the plasmalemma).

Similar facts hold concerning the interrelations of pairs
of other membrane surfaces. Their topological differences
determine functional differences, whereas topological
intertransformations relate the functionalities of membrane-
based organelles of different types, and the possibility of
their realization is a necessary condition for the functioning
of the synthetic and transportational succession of the cell.

The construction of the functional graph  D
Functions of vital importance take place in the cell:

the reception (assimilation) of food and energy, the
decomposition and synthesis of new substances, and their
storage and excretion. In the work [4] the list of functions
did not include the transport of nuclear metabolites; it is
now included. These functions are interrelated in such a
way that they form the administrative contour of the cell.
To support life as a whole it is necessary to have the
complete set of vital functions. Failure to perform even
only one of them is incompatible with life. The set of these
six functions is the same for all organisms.

A priori the  interrelation of vital functions in similar
systems can be expressed  by the functional graph  D (fig. 5).

Functional graphs have also been constructed by other 
authors. Graph  D is the  functional  block cheme  of the
cell. In the work [8] it is shown that there is morphism
from the biological graph of Rashevsky [1], [2] and from
other graphs onto the functional graph D. Thus it follows
that graph D, although given in simplified form, has well-
grounded validity.

Isomorphism between the morphological graph A and
the functional graph D

We shall now show that there is isomorphism between
the graphs A and D. It will be natural if we construct a
morphism between A and D in the following way: we shall
attribute the plasma membrane component of graph A to

the function of  “assimilation”of graph D, the lysosome to
the function of  “decomposition”, the Golgi complex to
“storage”, the endoplasmic reticulum to “synthesis”, the
residual body to “excretion”, and the nuclear membrane
to “transport of nuclear metabolites”. In other words, we
correlate the functions performed by these membranes in
the cell with the different types of membranes. The
morphism constructed between the graphs A and D  in such
a way is isomorphism.

Thus, the directions of morphological and functional
relations coincide with each other.  Isomorphism between
the functional graph  D (the functional block-scheme) and
the morphological graph A  (the morphological block-
scheme) is an important fact, it accounts for the essence of
circulation in the cell. Reconstructions of membranes, when
their connectedness and the genus of the surface change,
constitute the necessary conditions for the “administrative”
control of the cell.

It is most probable that the cell differs from non-
biological systems in this point, that the components
performing the vital functions transform into one other.

In our earlier work [4] we raised the question whether
the circulation of membranes as the graph A is the structural
expression of the the functional graph D, i.e. the graph of
vital functions, and one of the most specific signs for the
biology of the cell, and indeed life in general.

Now we can give a positive answer to this question.
The six mutually related functions performed by those
membranes which are reconstructed in ontogenesis are the
cause, i.e. the mechanism, of the reconstruction.vex1

It can be shown that the graph A is the extension Gf  of
the graph Gee by Gen and Gex and the mapping

 f : CC
GVv

vGV
G

GVv
vG IV

∈

′

∈

→× 2)(

defined  in the following way:

 f(ven1 
,iee1)={vex4 };  f(ven2 

,iee1)={vex2 ,vex4 };   f(vex4 
,iee2)={ven2},

where ven1 is the nuclear membrane, ven2 is the endoplasmic
reticulum, vex1 is the residual body, vex2 is the lysosome, vex3

is the plasmalemma,vex4 is the Golgi complex. Ontogenetic
intertransformations of the membranes of the cell are
characterized by this mapping  f  (fig.  4).

If the second mapping g is also given and if Gf  and Gg

are the graphs of the cell, then with the help of the equality
(2) we can predict whether the graphs Gf  and Gg will be
the graphs of the same cell, or of different cells.

Finally we can note that construction of a graph of a
complex biological organism from a simple (primordial)
graph in Rashevsky’s work is virtually an extension too,
although in his works the word extension is never
mentioned [1, 2].

ACKNOWLEDGMENT

 The author would like to express his appreciation to
Dr D. Tumanishvili for helpful  discussions.

Figure  5.  The functional graph D.
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